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Abstract. Tiger is an important type of an hash function that is proved
to be secure so far as there is no known collision attack on the full Tiger.
It is designed by Biham and Anderson in 1995 to be very fast on modern
computers, and in particular on the 64-bit computers, while it is still
not slower than other suggested hash functions on 32-bit machines. In
this paper, we will investigate the security notion of reduced round Tiger
against the very well known and the efficient block cipher attacks, namely
related-key boomerang and the related-key rectangle attacks.

1 Introduction

Hash functions are one of the key primitives of the cryptographic algorithms that
are used for many important applications such as data integrity, authentication,
digital signature etc. every day. Many of the digital transactions and the e-cash
applications are performed by effective hash functions. Thus, hash functions
need to be secure and effective at the same time so as to meet the everyday’s life
needs. Moreover, the increasing attention on the security of the dedicated hash
functions motivated us to work on this paper.

Several cryptanalytic articles [1] [2] were published to find collisions for very
well known hash functions. Especially the attacks proposed by Wang et.al [3]
[4][5] are very important attacks and many of the dedicated and widely used
hash functions, such as members of MD and SHA families, were broken by the
method proposed by Wang et.al.

Tiger is an important type of an hash function that is proved to be secure so
far as there is no known collision attack on the full Tiger. It is designed by Biham
and Anderson in 1995 to be very fast on modern computers, and in particular
on the 64-bit computers, while it is still not slower than other suggested hash
functions on 32-bit machines. In this paper, we will investigate the security
notion of Tiger against the very well known and the efficient block cipher attacks,
namely related-key boomerang and the related-key rectangle attack. We run the
Tiger as a block cipher omitting the hash modes and imposing the encryption
mode.

There have been several cryptanalysis papers investigating the randomness
properties of the designed hash functions under the encryption mode such as [6]
by Kim et.al. In that paper, related-key boomerang and related-key rectangle



attacks are performed on MD4,MD5 and HAV AL under 2, 4 or weak keys.
Moreover, there have been very important attacks[7][8][9] on SHACAL as well
which is based on SHA. As in these papers, we will investigate the security of
Tiger’s encryption mode.

The organization of the paper is as follows. In section two, we briefly intro-
duce the necessary parts of Tiger. In section three, the related-key boomerang
and the related-key rectangle attacks are mentioned together with the boomerang
attack and the rectangle attacks. In section four and five, the attack on the en-
cryption mode of the Tiger is detailed and section six briefly concludes the paper.

2 Tiger

Tiger[10] is a hash function which is designed for 64-bit processors by Biham
and Anderson. It uses 64-bit additions, subtractions, multiplications by small
constants (5, 7 and 9), shifts, S-box applications and logical operations such as
XOR and NOT . The main operation of Tiger is S-box application part. There
exist four S-boxes in Tiger where each takes 8-bit input and gives 64-bit output
operating on the even and the odd bytes of the input. The size of the hash value
and the intermediate state length are 192-bit, three 64-bit words. The message
block is 512-bit, eight 64-bit words.

The hashing operation of Tiger is similar to block ciphers. It has three 8-round
encryption part where one constant value is used in each as multiplication value
and between these parts it also uses key scheduling for the message expansion.
After 24 rounds there exists also feedforward part in which the updated values
are combined with their initial values.

2.1 Notation

Three 64-bit words that will be used in the intermediate state are called as A, B,
C. Each 64-bit message words obtained from 512-bit message block are named
as X0, X1, . . ., X7. Four 8 × 64 bit S-boxes are defined as t1, t2, t3 and t4. c[i]
denotes the ith byte of c. Addition, subtraction, multiplication signs are all used
for 64-bit operations and ith round input values are denoted as Ai, Bi, Ci where
i ∈ {1, . . . , 24}, ith round message block is Xi mod 8 and ith round output values
are Ai+1, Bi+1, Ci+1

2.2 The Round Function of Tiger

A, B, C are updated in this part as:

A := A− even(C)
B := (B + odd(C)) × const

C := C ⊕Xi



where const ∈ {5, 7, 9} and after modification part, the results are shifted around
and A, B, C become B, C, A. The functions even and odd are defined as:

even(C) : = t1(C[0])⊕ t2(C[2])⊕ t3(C[4])⊕ t4(C[6])
odd(C) : = t1(C[7])⊕ t2(C[5])⊕ t3(C[3])⊕ t4(C[1])

Before the beginning of the second 8-round pass, intermediate values A, B,
C are updated as C9, A9, B9. Before the beginning of the last 8-round pass again
intermediate values are updated and they are assigned to B17, C17, A17.
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Fig. 1. The ith Round of Tiger

The block cipher mode of Tiger is straightforward. First of all, the chaining
operations of the intermediate values are omitted and Tiger is treated as a block
cipher encrypting 192-bit plaintext into 192-bit ciphertext using 512-bit secret
key. There is no need to invert the odd and the even function since their inverses
do not affect the decryption mode. In the decryption mode, we just use the
inverses of the binary operations that can be defined very easily except for the
division mod 264. However, as we divide any number mod 264, this division
operation is well defined. Thus, besides the encryption function, the decryption
function is well defined.

2.3 The Key Schedule of Tiger

The key scheduling algorithm of Tiger uses some logical operators together with
the XOR, addition, subtraction, and shift. 512-bit key is expanded in key sched-



ule part as:

X0 := X0 − (X7 ⊕ 0xA5A5A5A5A5A5A5A5)
X1 := X1 ⊕X0

X2 := X2 + X1

X3 := X3 − (X2 ⊕ (X1 << 19))
X4 := X4 ⊕X3

X5 := X5 + X4

X6 := X6 − (X5 ⊕ (X4 >> 23))
X7 := X7 ⊕X6

X0 := X0 + X7

X1 := X1 − (X0 ⊕ (X7 << 19))
X2 := X2 ⊕X1

X3 := X3 + X2

X4 := X4 − (X3 ⊕ (X2 >> 23))
X5 := X5 ⊕X4

X6 := X6 + X5

X7 := X7 − (X6 ⊕ 0x0123456789ABCDEF )

where Xi denotes bit-wise NOT function, + and − denotes modulo 264 addition
and subtraction and << (resp. >>) shows the right (resp. left) shifts operations.

3 Related-Key Boomerang and Rectangle Attacks

The related-key boomerang and the rectangle attacks are some kind of com-
bined attacks that are introduced independently by Kim et.al[7] and Dunkelman
et.al[11]. Nowadays, they are the most effective and powerful block cipher at-
tacks that are applied to many known ciphers[12]. In the following subsections,
we will briefly introduce these attacks together with their primitives, namely the
pure boomerang and the rectangle attack.

3.1 The Boomerang and the Related-Key Boomerang Attack

The Boomerang Attack may be seen as the refinement or the effective use of
the pure differential cryptanalysis. After the application of differential-linear
cryptanalysis, the boomerang attack can also be called as differential-differential
cryptanalysis. In the boomerang process, instead of using one long-ineffective
(low probability) differential, the attacker may use two short-high probability
differentials to increase the number of rounds attacked and the probability of the
differential. The disadvantage of the boomerang attack is its adaptively chosen
plaintext-ciphertext nature. Besides the encryption box of the attacked cipher,
it is assumed to have the decryption box.



For the sake of simplicity, we will use the same notation as in[11]. Boomerang
distinguisher treats the attacked cipher E as a cascade of two sub-ciphers E0 and
E1, i.e. E = E1 o E0. As mentioned above, two short-high probability differen-
tials are used, one for E0 and one for E1, in order to increase the probability of
the distinguisher. Let α → β with probability p be the first differential used for
E0 and γ → δ with probability q be the second differential used for E1. Notice
that, once the differential is chosen in one direction, the same differential holds
for the opposite direction. Namely, the differentials β → α for E−1

0 and δ → γ for
E−1

1 hold with probabilities p and q respectively. The key step in the boomerang
distinguisher is to combine these two differentials.The boomerang distinguisher
works as follows:
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Fig. 2. Related-Key Boomerang Distinguisher Based on Four Related Keys

– Take a randomly chosen plaintext P1 and form P2 = P1 ⊕ α.
– Obtain the corresponding ciphertexts C1 = E(P1) and C2 = E(P2) through

E.
– Form the second ciphertext pair by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.
– Obtain the corresponding plaintexts P3 = E−1(C3) and P4 = E−1(C4)

through E−1.
– Check P3 ⊕ P4 = α.

After the first step of the above algorithm, the probabilistic arguments take
place. While obtaining C1 and C2, we assume the differential α → β holds with



probability p for E0 once. We do not have any arguments about E1 yet. Then,
after the third step, through the decryption process we assume the differential
δ → γ holds with probability q for E−1

1 twice as we go backwards twice, once
for each of the pairs (C1, C3) and (C2, C4). The crucial step of the boomerang
distinguisher comes to the picture here when we are going backwards. Once we
get E−1

1 (C3)⊕ E−1
1 (C4) = β, we are almost done as we know E−1

0 (E−1
1 (C3))⊕

E−1
0 (E−1

1 (C4)) = P3⊕P4 = α holds with probability p. Now, it is time to explain
how this is obtained.

E−1
1 (C3) ⊕ E−1

1 (C4) =
E−1

1 (C3) ⊕ E−1
1 (C4)⊕ E−1

1 (C1)⊕E−1
1 (C1)⊕ E−1

1 (C2)⊕ E−1
1 (C2) =

E−1
1 (C1) ⊕ E−1

1 (C3)⊕ E−1
1 (C2)⊕E−1

1 (C4)⊕ E−1
1 (C1)⊕ E−1

1 (C2) =
γ ⊕ γ ⊕ E−1

1 (C1)⊕ E−1
1 (C2) = E0(P1)⊕ E0(P2) = β

Therefore, the boomerang distinguisher works with probability p2q2. On the
other hand, for a random permutation, the last step of the above argument
holds with probability 2−n where n is the number of the bits of each plaintext
P . Thus, pq > 2−n/2 must hold for the boomerang distinguisher. The attack can
be improved by using all β and all γ values at the same time. Further details
are given in[11]. This time the probabilities are denoted as p̂ and q̂ for E0 and
E1 respectively, where p̂ =

√∑
β Pr2(α → β) and q̂ =

√∑
γ Pr2(γ → δ).

The related-key boomerang attack is one of the effective combined attacks
on block ciphers that can be applied to many known block ciphers. For the
related-key model, attacker assumes to know the relation (difference) between
the keys, but not the exact values of keys. The standard differential model tries
to increase P (EK(x)⊕EK(x⊕∆x) = ∆y). The related-key model, on the other
hand, tries to increase P (EK(x)⊕ EK⊕∆K(x⊕∆x) = ∆y).

The adaptation of related-key model to the boomerang attack is straight-
forward. The usual related-key model is applied to the subciphers E0 and E1

separately and the normal procedure is applied for the boomerang distinguisher.
However, some additional properties are adapted for the related-key boomerang
distinguisher. Instead of one pair of related-keys, 4 (or more)[13] related keys can
be used used and the most effective one is selected for the attack according to
the structure of the cipher. For Tiger, however, we are going to give details about
the related-key boomerang distinguisher based on 4 related-keys as follows:

– Take a randomly chosen plaintext P1 and form P2 = P1 ⊕ α.
– Obtain the corresponding ciphertexts C1 = EK1(P1) and C2 = EK2(P2)

through E, where K2 = K1 ⊕∆K12.
– Form the second ciphertext pair by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.
– Obtain the corresponding plaintexts P3 = E−1

K3
(C3) and P4 = E−1

K4
(C4)

through E−1, where K3 = K1 ⊕∆K13, K4 = K3 ⊕∆K12.
– Check P3 ⊕ P4 = α



The probabilistic arguments are the same as in the boomerang distinguisher
but they are converted to the related-key model for the related-key boomerang
distinguisher.

3.2 The Rectangle and the Related-Key Rectangle Attack

The rectangle attack converts the adaptively chosen nature of the boomerang at-
tack into the chosen plaintext attack. In fact, it is the refinement of the amplified-
boomerang attack[14] and used to attack to many known ciphers[12][13]. Instead
of using both encryption and the decryption boxes, the rectangle attack only uses
the encryption box.

In boomerang distinguisher, the γ difference after E0 and before E1 is gath-
ered through the decryption process. However, in rectangle distinguisher, the
pairs (P1, P2) and (P3, P4) make use of the differential α → β and since (P1, P3)
is taken as random, it is expected that the difference E0(P1)⊕E0(P3) = γ works
with probability 2−n. Once this is satisfied, the differential γ → δ comes to the
picture. Of course, the subciphers before and after the rectangle distinguisher
works as in the boomerang distinguisher. Besides the advantage of chosen plain-
text nature, it also makes use of all β′ values satisfying α → β′ and all γ′ values
that satisfy γ′ → δ. For the further improvements, the details are given in[11].
Using the notations given above, one can describe the rectangle distinguisher as
follows.
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Fig. 3. Related-Key Rectangle Distinguisher Based on Four Related Keys



– Take a randomly chosen plaintext P1 at random and obtain the correspond-
ing ciphertext C1 = EK1(P1).

– Form P2 = P1 ⊕ α and obtain the corresponding ciphertext C2 = EK2(P2),
where K2 = K1 ⊕∆K12.

– Pick another randomly chosen plaintext P3 and obtain the corresponding
ciphertext C3 = EK3(P3), where K3 = K1 ⊕∆K13.

– Form P4 = P3 ⊕ α and obtain the corresponding ciphertext C4 = EK4(P4),
where K4 = K3 ⊕∆K12.

– Check C1 ⊕ C3 = δ and C2 ⊕ C4 = δ

The probability P of the rectangle distinguisher is given by P = 2−np̂2q̂2,
where p̂ =

√∑
β P 2

K1,K2
(α → β) and q̂ =

√∑
γ P 2

K3,K4
(γ → δ). For a random

cipher, the probability of the given difference is P ′ = 2−2nS where S is the
cardinality of the set of differences of all δ values. Once P ≥ P ′ is satisfied, the
rectangle distinguisher works.

4 The Related-Key Boomerang and Related-Key
Rectangle Attacks on the Encryption Mode of Tiger

In this section, we present the related-key boomerang and the related-key rectan-
gle attacks on the encryption mode of Tiger. We will show 19-round related-key
boomerang and rectangle distinguisher by using 4 related-keys in the following
subsections. This reduced round distinguishing attack covers the round 5− 24.

4.1 Some Notation and the Conventions

Converting additive differences into XOR difference generally works with prob-
ability 1/2. However, the most significant bit difference can be used to discard
this probability. That is, if X − Y = 263, then P (X − Y ) = 263 = 1. For the
sake of simplicity, we use the notation as in[15]. Thus, let I = 263. We will use
the simplicity of the difference I, by not dealing with which type of difference is
used. As in[15], notice that a difference I in a word W does not change when it
is multiplied by a constant which is also used in the compression function of the
Tiger.

4.2 The Differentials of the Key Scheduling Algorithm

In Tiger, the message expansion algorithm is not a linear function. However,
some differences propagate linearly through the message expansion algorithm.
One of such differential is used in[15] to find collisions to reduced round Tiger.
This motivates us to search for other good differentials that propagates very
efficiently. What makes it good in terms of their efficiency is quite obvious in the
sense that the hamming weight of the corresponding differences should be kept
small. Also, reducing carry effect by introducing the difference I we got several
probability one differentials, the used ones can be seen in Table 1.



In order to make the attack efficient, we need to combine some of these differ-
entials very effectively. Observing the propagation of these differentials, since we
should make an extensive use of cancellations and probability one differentials,
for the key differences we need to find low weight and near differences. By near
differences, we do not mean to have huge gaps between I differences. Of course,
the number of rounds attacked is also very important. In the scope of this simple
tricks, in the following sections we present our attack on the encryption mode
of Tiger.

Table 1. The Propagation of Key Differences

Key Difference Rounds 1− 8 Rounds 9− 16 Rounds 17− 24
(0, 0, 0, 0, I, I, I, I) (0, 0, 0, 0, I, I, I, I) (0, I, 0, I, I, 0, 0, I) (0, 0, 0, I, I, I, I, 0)
(0,0,0,I,0,0,0,I) (0,0,0,I,0,0,0,I) (0,I,0,0,0,0,0,I) (0,0,0,0,0,0,0,I)
(0, 0, 0, I, I, I, I, 0) (0, 0, 0, I, I, I, I, 0) (0, 0, 0, I, I, 0, 0, 0) (0, 0, 0, I, I, I, I, I)
(0, 0, I, 0, 0, 0, I, I) (0, 0, I, 0, 0, 0, I, I) (I, 0, 0, 0, 0, 0, I, I) (0, 0, 0, 0, 0, 0, I, I)
(0, 0, I, 0, I, I, 0, 0) (0, 0, I, 0, I, I, 0, 0) (I, I, 0, I, I, 0, I, 0) (0, 0, 0, I, I, I, 0, I)
(0, 0, I, I, 0, 0, I, 0) (0, 0, I, I, 0, 0, I, 0) (I, I, 0, 0, 0, 0, I, 0) (0, 0, 0, 0, 0, 0, I, 0)
(0, 0, I, I, I, I, 0, I) (0, 0, I, I, I, I, 0, I) (I, 0, 0, I, I, 0, I, I) (0, 0, 0, I, I, I, 0, 0)
(0,I,0,0,0,I,I,I) (0,I,0,0,0,I,I,I) (0,0,0,0,0,I,I,0) (0,0,0,0,0,I,I,I)

(0, I, 0, 0, I, 0, 0, 0) (0, I, 0, 0, I, 0, 0, 0) (0, I, 0, I, I, I, I, I) (0, 0, 0, I, I, 0, 0, I)
(0, I, 0, I, 0, I, I, 0) (0, I, 0, I, 0, I, I, 0) (0, I, 0, 0, 0, I, I, I) (0, 0, 0, 0, 0, I, I, 0)
(0, I, 0, I, I, 0, 0, I) (0, I, 0, I, I, 0, 0, I) (0, 0, 0, I, I, I, I, 0) (0, 0, 0, I, I, 0, 0, 0)
(0, I, I, 0, 0, I, 0, 0) (0, I, I, 0, 0, I, 0, 0) (I, 0, 0, 0, 0, I, 0, I) (0, 0, 0, 0, 0, I, 0, 0)
(0, I, I, 0, I, 0, I, I) (0, I, I, 0, I, 0, I, I) (I, I, 0, I, I, I, 0, 0) (0, 0, 0, I, I, 0, I, 0)
(0, I, I, I, 0, I, 0, I) (0, I, I, I, 0, I, 0, I) (I, I, 0, 0, 0, I, 0, 0) (0, 0, 0, 0, 0, I, 0, I)
(0, I, I, I, I, 0, I, 0) (0, I, I, I, I, 0, I, 0) (I, 0, 0, I, I, I, 0, I) (0, 0, 0, I, I, 0, I, I)

4.3 The Differential for E0 (rounds 6 − 13)

In Tiger, we can find a probability 1 related-key differential for E0. For E0, the
related-key differential (I, I, I) → (0, 0, 0) works with probability 1 for rounds
6 − 13 under the key difference (0, I, 0, 0, 0, I, I, I). In round 6, by imposing
difference α = (∆A6,∆B6,∆C6) = (I, I, I), we cancel the subkey difference
∆K6 = I with ∆C6 = I making (∆A7,∆B7,∆C7) = (I, 0, I). In round 7, as in
the previous round, we cancel the subkey difference ∆K7 = I with ∆C7 = I.
Finally in round 8, we have (∆A8,∆B8,∆C8) = (0, 0, I). Again, the subkey
difference ∆K8 = I and the word C8 difference ∆C8 = I cancel each other.
From round 8 until round 13, we use the trivial differential which makes β =
(0, 0, 0). Notice that, we make an extensive use of the trivial propagation of the
I difference through the words Bi and even function as it does not affect the
even bytes of the corresponding words.

Table 2. The Propagation of Differences Through E0



Round ∆A ∆B ∆C ∆K Probability

6 I I I I 1
7 I 0 I I 1
8 0 0 I I 1
9 0 0 0 0 1
10 0 0 0 0 1
11 0 0 0 0 1
12 0 0 0 0 1
13 0 0 0 0 1

Up to know, everything works with probability 1 and the differential proba-
bility p and p̂ for the subcipher E0 is 1. This is valid for both of the related-key
rectangle and the related-key boomerang attacks.

4.4 The Differential for E1 (rounds 14 − 23)

For the second part of our distinguisher E1, the related-key differential (0, I, 0) →
(0, 0, 0) works with probability 1 for rounds 14 − 23 under the key difference
(0, 0, 0, I, 0, 0, 0, I). Here, according to the notation given above, γ = (0, I, 0).
Again we will use the trivial propagation of the difference I through the words Bi.
The difference γ in round 14 propagates to the round 16 as (∆A16, ∆B16, ∆C16) =
(0, 0, I) with probability 1 and cancels the subkey difference ∆K16 = I. From
the end of the round 16 till round 23, again we use the trivial differential making
∆A23,∆B23, ∆C23) = (0, 0, 0). As in E0, everything works with probability 1
and the differential probability q and q̂ for the subcipher E1 is 1. This is valid
for both of the related-key rectangle and the related-key boomerang attacks.

Table 3. The Propagation of Differences Through E1

Round ∆A ∆B ∆C ∆K Probability

14 0 I 0 0 1
15 I 0 0 0 1
16 0 0 I I 1
17 0 0 0 0 1
18 0 0 0 0 1
19 0 0 0 0 1
20 0 0 0 0 1
21 0 0 0 0 1
22 0 0 0 0 1
23 0 0 0 0 1

4.5 The Round Before and After the Distinguisher

We can extend the above distinguisher by adding one round before the dis-
tinguisher by imposing α difference in the sixth round. Since ∆A5 = I and



∆C5 = I differences propagate directly to the next round, we just need to play
with the difference ∆B5. Remember that we have to get ∆A6 = I. Therefore,
∆B5 = I − ∆odd(I) = α′ satisfies the desired difference α. However, we ex-
pect to have 232 possible ∆odd(I) values. Moreover, by using birthday paradox
techniques we can reduce this number to impose the α difference. If we take 216

∆odd(I) values at random, we expect that one of these differences cancel the
difference coming from ∆C5 = I. Therefore, at the end of the round five we have
I difference in the word A6 that is enough for our distinguisher.

There is also a possibility to add a round after the distinguisher given above.
We have (∆A23,∆B23,∆C23) = (0, 0, 0) and the subkey difference ∆X23 in the
last round is I. Therefore, the propagation of this difference through the last
round leads to the difference (∆A24,∆B24, ∆C24) = (δ′, I, 0) where δ′ is the all
possible differences caused by the I difference of the odd function in the last
round.

5 The Attack

For the boomerang distinguisher, we just use the round before the distinguisher
added to the usual related-key boomerang distinguisher that totally covers the
rounds 5− 23. The related key boomerang attack to the reduced round Tiger is
as follows:

– Take a randomly chosen plaintext P1 and form P2 = P1⊕α′ where α′ is one
of the 216 differences.

– Obtain the corresponding ciphertexts C1 = EK1(P1) and C2 = EK2(P2)
through E, where K2 = K1 ⊕ (0, I, 0, 0, 0, I, I, I).

– Take the second ciphertext pair as C3 = C1 and C4 = C2.
– Obtain the corresponding plaintexts P3 = E−1

K3
(C3) and P4 = E−1

K4
(C4)

through E−1, where K3 = K1⊕(0, 0, 0, I, 0, 0, 0, I), K4 = K3⊕(0, I, 0, 0, 0, I, I, I).
– Check P3 ⊕ P4 = (I, I −∆odd(I), I)
– If this is not the case, take another α′, if this is the case identify the corre-

sponding cipher as Tiger.

As the probability of the related-key boomerang distinguisher is 1 and there
are 232 possible ∆odd(I) values, identification of the Tiger will take 232 trials in
the worst case. Therefore, if we take a plaintext P1 and form 216 (P1, P2) pairs
as P2 = P1⊕α′, we expect that one of the pairs gives α′ difference that we need.
The required work is 218 reduced round Tiger encryption and decryption which
equals to 214.25 Tiger encryption.

For the related-key rectangle distinguisher on the other hand, we use the
round after the distinguisher added to the related-key rectangle distinguisher
that totally covers the rounds 6− 24.

– Prepare 297 randomly chosen plaintexts P1 at random and obtain the corre-
sponding ciphertext C1 = EK1(P1).

– Form P2 = P1 ⊕ α and obtain the corresponding ciphertext C2 = EK2(P2),
where K2 = K1 ⊕ (0, I, 0, 0, 0, I, I, I).



– Pick another randomly chosen plaintext P3 and obtain the corresponding
ciphertext C3 = EK3(P3), where K3 = K1 ⊕ (0, 0, 0, I, 0, 0, 0, I).

– Form P4 = P3 ⊕ α and obtain the corresponding ciphertext C4 = EK4(P4),
where K4 = K3 ⊕ (0, I, 0, 0, 0, I, I, I).

– Check C1 ⊕ C3 = δ = (∆odd(I), I, 0) and C2 ⊕ C4 = δ = (∆odd(I), I, 0).
– If this is the case identify the corresponding cipher as Tiger.

From the 297 plaintext pairs we can form 2193 quartets. As the probability of
our related-key rectangle distinguisher is 2−192, the trial of 297 plaintext pairs
results in a success probability of 1− (1− (2−192)2

−193
), which is approximately

0.86. We perform 2195 reduced round Tiger encryption and 232 operation to check
whether we have (∆odd(I), I, 0) or not. So, total work will become approximately
2154.3 Tiger encryption and a negligible checking operation.

6 Conclusion

In this paper we applied the related-key boomerang and related-key rectangle
attacks to the reduced round of Tiger. In the related-key boomerang attack,
the number of required plaintext pair equals to 216 and the time complexity
of the attack is 214.25. The related-key rectangle attack works with 297 chosen
plaintexts and results in a time complexity of 2154.3. This attack can be further
improved by adding more rounds before and after the dstinguisher and trying to
find more effective subkey differentials. Moreover, this differentials can be used
to find collissions for Tiger as an hash function.
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